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ABSTRACT

The weak form of the free boundary problem for an axisymmetric partially
0penetrating well may be formulated as follows: find ip(r) e c ([r 0 r I ] and

u e c0 (f) nlv (11) such that
fa rVu.Vvdrdz = 0 for all v e

and u satisfies appropriate boundary conditions. Here, u is related to
the hydraulic head, ip(r) is the unknown water-air interface, Q is the
region of saturated flow

= {(r,z)l0 < r 4 r0 , 0 < z < h) U {(r,z)Ir < r < r , 0 < z < sp(r)}

K1  is a convex set in the weighted Sobolev space V (s).

We reduce the problem to three families of variational inequalities by
using a type of "Baiocchi transform", study equivalence of the three families
and regularity of the solutions of the variational inequalities. Finally, we
prove the existence of the solution for the well problem.
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SIGNIFICANCE AND EXPLANATION

When an axisynunetric well partially penetrates a water aquifer, the water

flows through the ground towards the veil. By pumping water from the well,

steady flow is obtained. The flow is governed by a linear second order

elliptic differential equation which degenerates at the axis of symmetry. We

reformulate the problem as families of variational inequalities, and study the

regularity of the solutions of these variational inequalities. Finally we

prove the existence of the solution for the well problem. The variational

inequality formulation suggests a new numerical method for the partially

penetrating well problem.

'17
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THE SOLUTION OF THE FREE BOUNDARY PROBLEM
FOR AN AXISYMMETRIC PARTIALLY PENETRATING WELL

C. W. Cryer and S. Z. Zhou

Introduction

The free boundary problem for a fully penetrating well in a layer of soil

of permeability K(x,y) = exp[f(x) + g(y)] has been solved by Cryer and

* Fetter [1979] using variational inequalities. In this paper we consider the

problem for a partially penetrating well. A type of "Baiocchi Transform"

(Baiocchi [19743) is used to derive a corresponding family of variational

inequalities. Existence of the solution is proved. To this end we use the

theory of weighted Sobolev spaces and some results in Chang and Jiang [1978].

1. Weighted Sobolev Spaces

Our problem is governed by a degenerate elliptic equation. Degenerate

elliptic equations can often be associated with a weighted Sobolev space (e.g.

Murty and Stampacchia [19681, Trudinger [19731). Various kinds of Sobolev

spaces have been studied (e.g. Jakovlev [1966), Cryer [1980], Chang and Jiang

[1978], Leventhal [19751 and Zhou [1980]). We recall some results.

Let A be a bounded domain in the (r,z)-plane with a locally Lipschitz

boundary r, and with r > 0; C0 (A) - the space of functions infinitely

differentiable and with support compact in A; C (A i ) - the space of

functions infinitely differentiable in A and vanishing in some neighborhood

.*
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University of Wisconsin-Madison.

Sponsored by the National Science Foundation under Grant No. MCS77-26732 with
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of r vhere r C r. LP(A;r) - the space of measurable functionsi

*satisfying

lvi I rtvlp drdz < 11
", L (A,r) A

We define weighted Sobolev spaces as follows:

V (0(A) - L2 (Ar)

V I(A) - (via v e L2 (Ar), Jat 4 I} (1.2)

2()_v . v jay 2v L2

V2(A) - {vT S L (Ar), Jul 4 21

with norms, respectively,

V (A) L (A,r) >1
lvii = ai3vi

V (A) a ta1 V (A)

v (1 A1 (1.3)'V'v2 = [ ,ati +'rr
V (A) IcII2 V0 (A) r ar v0(A)

Denote by V (A), 10(Ai respectively the closure of C (A), C0(A; ) in
0 VO i 0

VI(A).

Lemma 1.1. VO(A), VI(A) and V2 (A) are Banach spaces.

Lemma 1.2. (Green's rormula). If u, v e V I(A), then

f v 3Vf (ru)

A ru r drdz - - A v Tr- drdz + f ruv cos(ner)ds

S-fA v z---- drdz + f ruv cos(n,z)ds

where n is the outer normal of r.

Lemma 1.3, If A is a closed subdomain of A and 3A N {r - 0-

then

1 A 1(A)

-2-
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Now let A be the three dimensional domain formed by rotating A about

z-axis, and let Si be the surface formed by rotating ri about the z-axis.

Lemma 1.4. If v(r,z) e Vk(A), k - 0,1,2 and
f(x,y,z) = V(/x2+y2 Z) (1.4)

then f e Hk(A*), where Hk(A*) is the usual Sobolev space, and A is the

interior of A

Lemma 1.5. If v e VA(A) and r {r = 0l = i, theni

* Ifi 21v1
HI(A) V(A)

f f2dS = 2Wr rv2ds

By using Lemma 1.5 and results in Sobolev [110, 1950] we obtain%

Lemma 1.6. If v e V (Ar. ) and
0 1.

mescr>(r. n {r = 01)] > 0

then

IVI 2  C f [(Iv)2 + (lv)2, r drdz
V (A)

where C does not depend on v.

2. Descritption of the Problem

The problem to be considered is shown in Figure 2.1.

A cylindrical well of radius r0 partially penetrates a layer of soil of

depth H and radius rV. Take the axis of symmetry as the z-axis. The

bottom of the soil layer is impermeable. The distance of the well bottom from

the bottom of the soil layer is h. We assume that the soil layer is

homogeneous and isotropic; that the water is imcompressibler that the flow is

Irrotatlonal and steady (in particular the height of water on the outer

boundary of the soil and in the well is respectively H and hw); that the

permeability k(r,z) 1.

-3-
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z[ E(r 0 ,H) "3 C(r ,H)

"' 
a D\a

3 P = \I r 0:Z p (r)

F4 F

~r
5

V G(r ,h) S

-(0,h) IP(r 0 1 h)

A(O,O) r B(r,O)
L. ', 

'f l l'1 T 777r1- I / l) p 1)i 11 T i ll i iI IJ i) P-

Figure 2.1

.4
The cross section of the soil layer is

D t. 11 U Ql U S 
( .1

1 2 3

where

1 = (r,z)JO < r ro t 0 < z < h}

12 = f(rz)lr < r < r,, 0 < z < p(r)}

3 m (rz)lr0 ( r < r ,  P(r) 4 z < I

-4-



and z = A(r) is the boundary between the wet region I2 - 1 U a2 and dry

region 3 " It is called the free boundary as it is the unknown part of an.

Denote by p(r,z) and u(rz) respectively the pressure at point (r,z)

of D (the atmospheric pressure being measured by zero) and the hydraulic

head, then we have

u(rz) = p(r,z) + z in 12 . (2.2)

It follows from Darcy's law and the equation of continuity that (see Hantush

(1964], or Cryer [1976, p. 86])

Lu - !2 u  + - + 2- 0 in 9 6 (2.3)Br 2  r z 2

We introduce the notation

r = {(r,z)1O < r < r1, z - Ol

r"2 = f(r,z)lr = r , 0 < z < H)

F = {(r,z)lr 0 < r < r , z= H)

r = {(r,z)lr - r0 , hw < z H Hi

r = {(r,z)lr r h < z < h I
5 0 w

F = (r,z)I0 < r < r , z = hi
6 0

F = ((r,z)lr - 0, 0 < z < hi
'9. 7

o = {(r,z)r < r < r z = 4p(r)}.

Then u(r,z) satisfies the following boundary conditions:

u - H on r (constant hydraulic head)

u = z on F0 u (F4 n an) (interface with air) (2.4)

u - h on r ur (interface with water at rest)w 5 6

-5-
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au 1
" 0 on O U r (streamline)

au 0 on r? (symmetry) J
Now we can state our problem in weak form.

Problem (PPW)

Given the domain as in (2.1), and a real number hw  such that

h < hw < H, find functions o(r) and u(r,z) such that u satisfies (2.4)

and

( e C0([r 0 or1]), p(r1) H, O(r 0) h w  (2.6)

o is strictly increasing , (2.7)

u e V (0) r c°(I) , (2.8)

fo rVu-Vv drdz - 0 for all v e K1  (2.9)

where

1£ U {(r, z) e D Ir > r. 1 0 < z < r

K= {v e VI(Q)1v = 0 on r2 u (r f4 n a) u r5 r r 6

Remark 2.1. This problem can be regarded as a plane problem with permeability

K - exp(Ln r), but it is not covered by the work of Benci [1974] because

In r 0 HI' 2+P((0,rl]). Also, it can not be included in Alt (1979] as a two-

dimensional problem. Rama and Das (1976] solved this problem by numerical

methods.

Remark 2.2. Chang and Jiang [1978 have solved a similar problem by using so-

called "Sequence of set-valued mappings" instead of the method of variational

inequalities. Further results about obstacle problems have been obtained

recently by Chang (19803. We use some results on linear equations given by

Chang and Jiang [1978]. But we solve our problem by using the method of

variational inequalities because the corresponding numerical method is more

-6-



convenient, and because in our case the boundary conditions and right term of

the nonlinear equation for the Baiocchi function w are different from those

in Chang and Jiang [1978].

3. The Baiocch Function w and its Properties

Assuming a priori the existence of the solution u of (PPW), set (see

Baiocchi [1974], [1976), [1978])

u(rz) in f
u(r,z) (3.1)

zin D(

w(rz) [u(r,t) - tjdt ( (3.2)

Remark 3.1. We can not use the transform

f l 1 r)

wr,z)=z [u(r,t) - tdt

where pI(r) H for r0 < r < r1  and P1(r) = h for 0 < r r0, since

aw C()r$ CIID). This is obvious physically. (Cf. Lemma 3.6).

Now we derive some properties of w and u.

Lemma 3.1. Lu = 0 in 9 (3.3)

u is analytic in iimr A, B, C, F, G, P, QI (3.4)

au
a 0 on r u r (3.5)

auan 0 in the weak sense on r0  (3.6)

Proof. On writing (2.9) for any v e C0(Q), we obtain (3.3) in the sense of

distributions. From classical results on the regularity of the variational

A -7-
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solutions of elliptic equations in the interior and on the smooth parts of the

boundary (see for instance Lions and Magenes [1972, §9, Ch. 21) it follows

that

u is analytic in d\{r 0 r7, A, B, C, F, G, P, Q}

Denote by the three-dimensional axisymmetric domain with cross-section

Then u*(x,y,z) = u( + y z) is a solution of the equation

Au - 0 in Q where Q is the interior of 9 . Hence u and u are

analytic on r7 because r7  is in 9 , and (3.4) is valid. (2.9) implies

(3.5) and (3.6) in the weak sense. (3.3), (3.5) are satisfied also in the

classical sense thanks to (3.4).

Q.E.D.

Remark 3.2. It follows from the three-dimensional argument above and maximum

principle that if Lv > 0 in Q with v e C (f) then

vir < max v

7 U

and if in addition L- 4 0 at the point Q then

v1 < max v
Q

Similar results are valid for min v if Lv ) 0.

Lemma 3.2. u(rz) > z in 9 . (3.7)

Proof. Set v = u - z. Then we have

Lv =0 in S1

v = 0 on r0  (aa n r4)

v = H - z on r2

v = h z on r5 urw 5 6
on r

a= 0 on r

an7o



Since L is elliptic and v e C (), v attains its minimum, m say, in

at a point p* e 3. But p* r (by Hopf principle) and p r r7 (by

Remark 3.2). So p* e an\(r I U r 7) Hence m is zero. It follows from the

strong maximum principle that v > 0 (i.e. u > z) in .

Q.E.D.

- 1 0-
Lemma 3.3. e v (D) n C (D) (3.8)

Lu = - 9- in the sense of distributions (3.9)

where * is the characteristic function of £0 in D.

- 0-Proof. By (2.4), (2.8) and (3.1) it is easy to see that u e C (D). For any

e c (D) we have

fD U 3  drdz = fS + fa + fiD z1 2 3

rrr= dr u0 u dz + f1dr f ()u 21dz + f1dr f a9Adz
3r 0 3z r d(r) 3z

au au
= P -a drdz fa L drdz - ' dxdz (Integration by parts)

I 2 3

= SD v drdz

where

in Q

1 in D\Q

Hence

1 in D\Q)

Similarly we have

-9-



auu rr in

0 in D\fl

Clearly, u e v (D).

Now we prove (3.9). If * e C 0(D) then 4 e x I Hence we have for the

distribution Lu and every e 6 C0 (D)

<Lu,r*> - -D r~u-V* drdz

- a rVu.V* drdz - 21 r drdz

= - fD z (1 - §,)r drdz = (1 - iR), rO>

0 a r*

It is just (3.9).

Q.E.D.

Proposition 3.4. Let w be defined by (3.2). Then

Lw =- in the sense of distributions. (3.10)

Proof. Since ui e C 0(D), we have

aw -
r u(r,z) - z . (3.11)z

So in the distribution sense we obtain (by (3.9))

-(Lw) -- L =Lu -Lz = -
z 3z

Hence (Schwartz [1973, §5, Ch. 23)

Lw + 0 Q Tr) 1(z)

Since u is analytic in n U r and au . 0 on rI, we have in 9:

Lw m 2w  + law + 2w
ar2  r r 3z 2

0 -- L)t + au(r,z)0 3r r2  r ar z

z Lu dt + 5- - 1-o0
-z

1-10-



Accordingly, T(r) 0 and (3.10) is valid.

Q.E.D.

Proposition 3.5. w is a solution of the equation with discontinuous

nonlinearities:

0 for 0
Lw aw (3.12)

-1 'for a > 0-TI

Proof'. It is enough to prove that

awz > 0 , if (r,z) e

=w . 0 , if (r,z) e D\ •
3z

But this is obvious thanks to Lemma 3.2 and (3.11).

Q.E.D.

Lemma 3.6. 1- 3)

*. aw(r,.
r 3wr = constant 0 for r e ]r0 ,r1 [ • (3.14)

Proof. For any * e C 0(D) we have

,. ,War dr dz fh dz f f u t- ti dr
r0

dz S t f zt) - t dr

d h z [[u(r,t) - tl*1 dt - 4*(fz 3 dt)drdz
0 Or=r 0 o Tr

(integration by parts).

Similarly, we have

-t . -11-



w 2drdz dz f u(rt) - t]4rodt - f (fZ dt)drdz

Since 4 0 on {(rz)r-ro, h z 4 H), we obtain immediately

f w drdz - -f W( dt)drdz for any * e CO(D)
D w r D 0 ar 0

aw(r,H)
(3.13) has been proved. Now set f(r) = r r Then for any

8(r) e C0(3r0 ,r1 [) we have

' frl rflrdr ,Srrdr

00

r r a rr,z)r r r 01 a1

= S rVu'V1 1 drdz

where

,rI" ( 1 (r) for r e

f r r r,z) -
•

0 for r e 30, r03

Clearly 41 e K1 . Hence it follows from (2.9) that

fro f dr 0 v e Co()ror[)

so f(r) is a constant for r e )r0,r1 [, which we denote by q.

Q.E.D.

Remark 3.3. Physically, 2wq is the discharge of the well.

Proposition 3.7. Let

-12-



on r

2
Hz - onr

2 2
, gq ,,(3.15)

non r u r2r I  3 4

H 2  r 0  (hw-Z] 2

Then w(rz) q on rf r
I~i: Thennsw') )=% ° D- n r N

;where r u r ri, r = r6 u r7SD iN 6 7"• i=I

Proof. Thanks to (3.2) and (2.4) we have clearly

:. Z2

Sw -0 on r2, w = z - on r

Hence w(r1 ,H) = H
2/2. Solving the ordinary differential equation

i : wit,H)r 3 r q we obtain
3r

2
w - + q In L- on r

2 r 3

On r we have r = u - z 0. Hence

4

H 2r
w(r0 ,z) = w(r0 ,H) ff + q In r

On r we have ain hw- z and

H2  r (hw z)2

w =Wro,h) + fhw -dz !L + q In r-Ovh rz 2 r1  2

-13-
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(3.16) is obvious.

Proposition 3.8.

w(r,z) = g (r,H) in D\V (3.17)
q

w(r,z) < gq(r,H) in QVI . (3.18)

Proof. (3.17) follows from (3.1), (3.2) and Proposition 3.7. (3.18) follows

from (3.17), Lemma 3.2 and the fact that u e c0(U).

Q.E.D.

Remark 3.4. We obtain another form of the nonlinear equation for w:

. 0 in [w= gq(r,H))
-1 in n 1U {w < g (r,H)}

Proposition 3.9. w e V2 (D) . (3.20)

Proof. By (3.2) and (2.8) we have

aw 32w 32w 0T' yi' rz e V(D) (3.21)

Differentiating (3.13) we obtain

a w au 0
• , T e V O (D) (3.22)

.4 Now we prove that

aw 0
r e V°(D) . (3.23)

In fact, we have

' 3' dt)2 drdz ]f rH~f; (h)2 dt~drdz (Schwartz inequality)

,r 3 2r
- () dr dz fo r(8)2 dt + f 1 dr fo dz f r('jr dt]

00 a r- r; " 0,
0 r

[ h 0dr f~r(~)d H dr f~ r(L)

H2 fD r( )2 drdz <

-14-
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At last we prove that

" T2 e V(D) ( (3.24)
r r

By (3.10) we have, as distributions,

a2 W a a2 w aw

* at-2  2  ra

Hence it is sufficient to prove that

1 a w V
Se V(D) • (3.25)

Let R ((r,z)J0 < r < 0< z < h} -hA' (-0) f(z) -

0) r 0 *)
u(--,z). Then ulI, e C (R R ) ( V(R ) (by Lemma 3.1), and

2 R
ul is the solution of the boundary value problem

R

LU = 0 in R*

ul h au
z-hhwe Z tz=0 = 0

ul = f(z), u is bounded near r = 0r 0
t 2

By using the method of separating variables we obtain that

I W - 1 1 (x)2k
0  ki r(k+l) (3.26)

k=0

It is easy to show that au - 0(r) as r + 0. Hence - aw 01) as! aw 0vo0,~ and r rr *• (R

r + 0, and - - * e V 0 (R ) Now (3.25) is clear.
r3 R

Q.E.D.

~-15-



Proposition 3.10. w e C1 (D) 1 (3.27)

In order to prove this proposition we cite a theorem in Chang and Jiang

[1978j, the proof of which is given in the Appendix.

Theorem 3.A. If v e V (D) and Lv f e LP(Dir) (p > 6),

al 0, then v e CCD) ( < 1).
v~r = rnr2

D N

Proof of Proposition 3.10:

At first we construct a function vq such that

v Ir = gqq q

D

av

(3.28)3nq r N g
N

v e V2(D) n CD), Lv e L (Dir)
q q

To this end we set (cf. Baiocchi et al. [19731, Chang and Jiang [1978])

Vq V1 + qv2 (3.29)

where

~02,fo(Z) o <r( 2

v f (3.30)

1 2r-r-r 2 r+r0) o - r r'i r, r1- 0  + 0 z

Kf2 (r) tI_(I.h )21 0 4z h
v 2 = (3.31)

f2 (r) h 4 z H (

and

( w
f(z) h

f~z) = H2  (h -z)2  w h

w 0 Cz h2 2 w

~-16-
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f (Z) h 4 z H

f0(zi ={f:EG) ~ '0~ ~ ¢~), h21 o < z I h
h

zf (z) Hz - 2

ro 23 r

£f+3T
2

0 T 0
(3.32)

f2(r)
2__ r r1

In rl r 0 r r

* It is readily verified that

0 on rI
-o 

I

2
-; z (3.33)

i r Rlz - A onr2
D2

H on r3 ur4
2

I2 (hw-z)I'i _ . -on r.

2 2

avl (3.34)

.'-

0 o n ro r
(3.35)v 21r D In on r 3 u r 4 u r 5

r 
I

-n 2 R 0 (3.36)

Vie v2 e V 2(D) r C( 6) (3.37)

LVI, LV 2 0 Dr (3.38)

• ' -17-



Hence (3.28) is valid.

Now we set v = w -vq, then v e V2 (D) (by (3.20) and (3.28)), and

Lv = - - Lv e L (Dr)

vl 3-r = oD 3 N
(3.27) follows from Theorem 3.A immediately.

Q.E.D.

Pro osition 3.11 d
q r-r0+m0- fh [j(r,t) - -(ro t)3dt
q im rr h 0
r~r +0 0

0

(3.39)

+ lim -- fo [u(r,z) - u(r,hl)r dr
z+h-0

Proof: By the mean value theorem of differentiation we have that for any

r e 1r0,r1[ there exists e ]r 0,r[ such that

-H-

h1(rt) - U(rt)ldt = u(rt) - tjdt - f u(ro,t) - tdt

- w (r,H) - w(r,h) - [w(r0,H) - w(r ,h)]

3W(&eH) aw(C,h)
I -- -1 1(r -r)

r r -0

It follows from (3.27) and (3.15) that

r0 -- w(r0'h)
lim - _H [u(r,t) - u(r0 ,t)]dt - q - r 0  

3 r (3.40)
rr0+0 r-r0

On the other hand, for any z 8 ]0,h[ there exists a n e iz,h[ such that

fro -r 0  u(r,n)
z-h [u(r,z) - u(r,h)]r dr = r Ir (3.41)

- 8-
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Let D1 - ((r,z)JO < r < r0, 0 < z < n). It is easy to show by Green's

formula that

3u(r0 vz) -fr au4rn)
o D L-r drdz =-j 0 rO dz - r dr

So we have

r0  ( ')' au(r #z) dzr 3v(r0 T1fdz - r r (3.42)0 3z rd=r 0 /0 3r 0 r

Now we obtain (3.39) by (3.40) - (3.42) and (3.27).

Q.E.D.

Remark 3.5. Physically, (3.39) means that the total discharge to the well

consists of two parts: one is across the wall of the well, another is across

the bottom.

4. Variational Inequalities (VI) Satisfied by w; Regularity of the Solution

of VI

Define functions for every v e V (D):

v in Q, (v 4 gqH)
v' (4.1)

gql r,H) in v > gq H(

0 ooin , [v 4 gqH
v. r (4.2)

v - g,(r,H) in (v > gqH)

where (v ( g J = {(r,z) e Dir > r , v(r,z) gq (r,H)}

(v > g I = {(r,z) e Dir > rO, v(r,z) > g q(r,H))

Then, clearly, we have
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r

v v' + v", v" > 0, v' q g (r,H) for r e )ro,r 1 , V' V" 8V 0()
.0 (4.3 )

Let

K (v e V (D)'v = g on r D (4.4)q gq D "

We have

Theorem 4.1. If u is a solution of (PPW), then w defined by (3.2) is a

solution of the VI:

w Kf q

fD rVw-V(v-w)drdz - (h -h) f r(v-w)i hdr -fD (v'-w' r dr dz > 0 (4.5).W 0 =

for v K
q

Proof: By (3.20) we have w e V 2 (D). Apply to w and to any v e Kq

the following Green's formula:

f rVwV(v-w)drdz

aw aw
DrLw(v-w)drdz + f r(v-w) Ln ds + f+ r(v-w) rn ds

D N

= D rOO(v-w)drdz + (hw-h) f0 (v-w)l z=hr dr

=f r(v-w)drdz + (hw-h) fJ0 (v-w)fzlhr dr

r0

f D~vw) v" 0 and)
fa r(v'-w')drdz + (h -h) 0 v z--hr dr (w" 0

But - fD a(v'-w')r drdz - fD\ [vI-g,(r,H)]r drdz ) 0 (by (3.17)). Hence

(4.5) is valid.

.E.D.
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Remark 4.1. It is easily seen (by (3.17) and (3.18)) that w is also a

solution of the VI

weK
q

rVw°V(v-w)drdz - (h w-h) f0
0 (v-W)I z-hr dr -D r(v-w)drdz > 0 (4.6)

*

for v e K
q

where

K -(VeV (D)Iv gq on r D'v 4 (r,H) in D\11) 1 (4.7)

Remark 4.2. Noting (3.7) we have that w is also a solution of VI

we K

fu rVw*V(v-w)drdz - (hw-h) 0(v-W)Izhr dr - fD (v-w)r drdz > 0 (4.8)
' *

for v S K
" q

where K {v e KqIV )0 in D} . (4.9)
q q

Remark 4.3. For numerical solutions (4.8) is the most convenient VI. By the

well-known result (Lions [1971, p. 9]), Problem (4.8) reduces a minimization•* 
problem on a convex set as follows: find w e K such thdt

q

JOw) - min J(v) (4.8')

veK
q

where

J(V)- fD rIVvI2drdz - (h ,-h) f ,0' v° r dr - 2 f vr drdz

(4.8') is the bta.Ls of numerical solutins to (PPW) by using VI's.i
1 I-21-



For q e R, (4.4) is a family of Vi's. So are (4.6) and (4.8). Now we

study these families.

Proposition 4.2. V q e R, (4.4) has unique solution Wq

Proof: Set V = v e V I(D)Iv = 0 on r I V (D;1 )
1 0 1

a(u,v) = fD rVu.Vv drdz

r0
f j

f(v) f v'r drdz + (hw-h) J0 rvl zdr

Then V is a Hilbert space with inner product (u,v)v

= r(uv + Vu-Vv)dr dz; K is a closed, convex, non-empty (e.g. Vq e K
Dqvqe q;

see (3.28)) subset of V; a(u,v) is a bilinear, continuous and coercive form

on V x V (by Lemma 1.6); and it is easy to show that f(v) is a convex,

continuus functional on V with f(v) it -0 and f(v) 7 +-. By the well-

known theorem (Lions and Stampacchia 11967, theorem 2.21), we obtain the

conclusion of our proposition.

Q.E.D.

Proposition 4.3. V q 4 q0, where

H2 - (h -)

w (4.10)
0= 2 £n(r1 /r0 (

(4.6) has a unique solution. (4.8) also has a unique solution.

The proof is similar to that of Proposition 4.3. The condition q 4 q0

ensures that both K and K are non-empty.

We will prove later that the problems (4.4), (4.6) and (4.8) are

equivalent for q 4 q0  (Theorem 4.13). Now we study (4.4) in detail.

Proposition 4.4. V q e R, the solution wq of (4.4) satisfies, in the sense

of listributions, that

-1 4 Lw 4 0 (4.11)

q

-22-



Lw qe L (Djr) .(4.12)

Proof: Given e Ce0C(D), >' 0. Let v = w q ' Then v e xq

0n q qwq4gq

VI =1 w - '-g (r,H) in {9 < w 4 g +4)
qqqqH q qH

0 in (wq > g~ +4

Hence

-, w, > ' (4.13)
q

On writing (4.5) with v - 4 and w wqwe obtain that

D - rVw *V4 drdz - (h -h) fr r4'I dr - f r(v'-w')drdzDf q w 0 z-h D q

4 _f DrVw q R* dr dz + fDr* drdz - <Lw q+ 1, r4'>

I. for any*4 e c (D), 4'>0

Hence Lw +1i >0 *(4.14)

Similarly, given 4'e C (D), 4')0, let v =w + 4.Then v' > w', and
0q q

(4.5) becomes that

0 4 fD rVw -V4'drdz f Ir(v'-w-)drdz 4 f. rVw *4drdz
D q D q

i.e. <LwI r* > 4 0 for any * e C0 (1,), 0'~

Hence Lw 4 0.
q

This inequality and (4.14) prove (4.11), and (4.12)follows from a well-known

theorem (Schwartz £1973, th. v, p. 29) and Radon-Nikodyn theorem.

Q.E.D.
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Proposition 4.5. If wq is a solution oE (4.4), then

aw
nlr = g " (4.15)
"nl N

Proof: At first ve prove that, in the sense of distributions,

aw
q = h - h on r (4.16)

3z w 6

aw

0 on r • (4.17)ar 7

Given I e C(1  ) such that * > 0, and £ > 0, we construct an element
0 6V1

e V (D) with ) 0 in D, *F = I on r, IF 0 on r and

fr drdz < C . (4.18)

Let v = wq - I . Then we have v' - w' ) IF similar to (4.13). It follows
q

from (4.5) and generalized Green's formula (Baiocchi and Capelo [1978;

Appendix 4 of V.1)
r0

0 < -f rVw .VI drdz + (hw-h) f0 r4PlI hdr + fD r* drdzq

aw
' <LW ,r*P5> - <--z ,r* >r + <hw-h , r* >r + <1, >

6 6

i.e.
aw

(h-h), r* > <Lw + 1, r IF> (4.19)
3 - (hw6 q

On the other hand, writing (4.4) wih v = Wq + IF we obtain

0 < f rVw .VF drdz - (hw-h) fJO r* Izhdr (since v' > w')D q C0 zhq

aw

-<Lw r > + < rI r* - <h-h, rO >

-24-
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i.e.

<--a - (h -h), r > 6 
> <LWg, r* > ( (4.20)

3z w 6 C

By (4.19), (4.20), (4.11) and (4.18) we have (since e 4' on r6 )

aw
<q- (h-h), r*>r fD r4' drdz < e

Since £ > 0 is arbitrary, we have

S(h.-h), r*'> = 0 V 0 e Colt), e C 0
r 6 0 6

This proves (4.16). Now we prove (4.17).

Introduce the notation:

Fq = Lwq

v = v( ,x2  z) for any function v(r,z)
• / x2+y 2

D = 1(x,y,z)I(r,z) e D, r = / +y ((x,y,z)lx=y=O, 0 < z < h}

r = {(x,y,z)I(r,z) e ri , r x

• (~~~jrz /x2+y2)FD = (x,y,z[r,z) 'SD, r =}

D. D

Then D is a three-dimensional axisymmetric domain whose boundary is

6'u and w is the solution of the problem:

AW =F in D

on rSwq =g D

• aw

Tn2 hw -h on r 6

-25-
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* - , . H2,PD
By (4.11), F* e L (D). Hence w I e H2(). p < -, where D-

q -- - q D 1 1*/_
I(x,y,z)l(x,y,z) e D , x2+y 2 < r -}. By embedding theorem we have that

wq c (D1  (4.21)

Now it is easily seen that

aw 3w

ax = 0 at x= y =0 in D1

Hence
aw
D = 0 at r 0 in D

(4.17) has been proved. Moreover, (4.21) means that (4.15) is valid in

ordinary sense.

Q.E.D.

Now we need the following results (see Chang and Jiang [19781).

Lemma 4.A. Let f e LP(D;r), p > 2. Then the problem

Lv = f in D

vIr = Lnr 0
D N

has unique weak solution v in V (D), and v e CD. Moreover, the linear

0-operator K: f ' v, mapping LP(D;r) (p ; 2) into C (D), is compact.

Theorem 4.B. Let

U(D)=IvV2(D),v = 0 on D' n 0on N

Denote by R(L) the range of the operator L as a map from U(D) into

V0 (D). Denote by R(L) the orthocomple.,iert of R(L) in V0 (D). Then
i

dim R(L) = I

* -26-



II

i.e. there exists v0 e R(L) such that

1 0
R(L) = tv e V (D)Iv - 1v0 , P e R

Remark 4.4. It is easy to show that K is also a compact operator mapping

LP(D;r) into Vi(D).

Now we verify the continuity of the solution of (4.4).

Proposition 4.6. If wq is a solution of (4.4), then

0w e c(6) (4.22)
q

Proof: Let f Lwq -LVq where Vq is defined by (3.29). Then

f e L (Dir), and the problem

?~ " "
Lv =f in D

3vv I r an Ir N 0
D N

has unique solution in V (D) which belongs to C 0(D) (by Lemma 4.A).

Clearly, v = - Vq is the solution of the problem. Hence w e cC(D).q

Q.E.D.

Proposition 4.7. Assume wq is a solution of (4.4). Let

Li = {(r,z) e Dir > r0 , w < g (r,H)) U fl
q q q1

q = {(r,z) e Dir > rO, wq > g q(r,H))

Then, in the sense of distributions,
-1 in Li

q

Lw *(42)

q 1 in q

Proof: By (4.22) both Qi and q are open sets. Given e c ( q,-- q q O

define 4 0 in D\Q q Clearly E C Dq, where E is the support set of

4. Let

-27-
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M= min (g (r,H) - w)nlr>r0}

Then m > 0, and there exists A > 0 such that for each real A with

A we have

IA1~l < m

w + Ai ( g (r,H) in S1 r (r > r •

On choosing in (4.4) v = wq + A*, we obtain

0 4 fn rVw OV(X)drdz - X r* drdzSq q q

q

•q q

As the sign of A is arbitrary, we have

_ S, rVw 0V drdz =f, r* drdz -V *-CC C0(SI
q qq

i.e. Lw, -1 in i Similarly, we obtain Lw= 0 in
q q

Q.E.D.

Lemma 4.. Let f2 = Lv2, where v2  is defined by (3.31). If v e R(L)

then

f" = v' 2 r drdz + 0 ( (4.24)

Proof: Assume 8 0o Then f2 I v, and f2 J R(L) (by Theorem 4.B). So

f. q R(L). It means that there exists v e 17(D) such that
SLV* f 2*

r Lv

v Ir W -I r -0D N
-- = * 1-
By (3.3R), f2 e L (D;r). Hence v L C (D) (by Theorem 3.4). Let v

v2 - v . Then v 8 U(D) r) C (D ), and

-28-
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Lv - 0 in D

0 on r1 u r 2
D In-C on r3 ur ur 5

nr 3 4on

W.1I r t;

Hence v has minimum in D, which lies on 30; but not on r6 (by Hopf

principle); nor on r7 (by remark 3.2). It must be on rD  and

r0

min v - v(r 0 h) - In 02.

D r 1

av au

But n 0 on r then Tn 0 at the point (r0 ,h) (as v e C CD).

This contradicts the Hopf principle.

Q.E.D.

Theorem 4.9. Assume Vq is defined by (3.29), fq LVq. Wq is the
q

solution of (4.4), Fq - LWq. Let v e R(L) ,

G(q) f fD (F - f )vrdrdz (4.25)0 q q

then the following two assertions are equivalent:

* (1) q is a root of the equation

G(q) - 0 (4.26)

(2) w e V 2(D) r C().-- (4.27)

q

Proof: If G(q) = 0, then

fD (F- - f- )vrdrdz = 0
q q

i.e. (F - f ) 1 v in V0 (D). By Lemma 4.A we have
q q

L(w - v_) e R(L)
q q

Hence

wv - U(D)
q q

-29-
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It follows from Theorem 3.A that

W - v _ D) , (4.28 )
q q

We obtain (r.27). Conversely, if (4.27) is valid, then F - f e R(L).
1 q q

(4.26 follows from the fact that v e R(L)

Q.E.D.

Lemma 4.10. (4.26) has at least one real root.

Proof: At first we prove that the function

F (q) fD F vrdrdz

is continuous in -0 < q < +0.

Given q' e R, let (qji be a sequence converging to q', wqi be the

solution of (4.4) corresponding to q, q, be defined by (3.29), and vqi

*w -i v qi Then we have

Lw M F e L (D:r)

qilr =g i

aw
aq 

[

N

LV F - f e L (Dir)
qi qi qi

=0

av
q i

N

-30-
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By (3.29) - (3.32) and (4.11) the sequence (F - f I is bounded in

L2 (Dir). Therefore it is possible to select a subsequence, still called

F - f qi, in such a way that

(F - f ) converges weakly to F in L2(Dir) * (4.29)

It follows from Lemma 4.A and Remark 4.4 that

• 0-

(v* } converges strongly to v in C (D) (4.30)~qi
I.* V1

{v* I converges strongly to v in V (D) (4.31)
qi

where v satisfies

- v * .

Lv -

vl r =an-lr N 0

D N

Since wq Vq + vqi we have (by (4.30) and (4.31))

{w I converges strongly to w in C0 () (4.32)
q

. {w } converges strongly to w in V (D) (4.33)
q

where w = Vq. + v . Accordingly, w 9r = g , (by (4.32)), i.e. w e xq.

We also have

Lw - f + F o (4.34)
Eq'

Now fix any v e Kq it is easily seen that there exists a sequence {v i

such that vi e Kqi and {vi } converges strongly to v in VI(D); so that

from

f rVw .( - wq )drdz - (w - h) f0v - wq) =hrdr

- f r(v' - w' )drdz 0
D 9i
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it follows (remark that (4.33) implies w' + w' in L(Dir)) that• qi

fD rVwV(v-w)drdz + (hw-h) f 0 v_w) z-h rdr

-D r(v'-w')drdz ) 0

Hence w is the solution of (4.4) for q - q'i i.e. w - wa,, and (by

(4.34))

Lw Fqi ifqi + * (4.35)

By (4.29) and (4.35) we have that

2
{F converges weakly to F in L (Dir)

--I

This means that for any {qi) with lim qi - q' there exists a subsequence,

still called {qi }  such that

irm fD F vrdrdz - /D Fqm vrdrdz

q *

Accordingly, F (q) is continuous. Clearly, F (q) is also bounded (by

* (4.11)).

(4.26) may be rewritten as

F (q) - q- = 0 (4.261)

where 0 = 'D f2vrdrdz + 0 (by Lemma 4.8), a = D fIvrdrdz. Clearly, the

right side of (4.26') changes its sign when q changes from -0 to +0.

Hence (4.26) has at least one real root.

Q.E.D.

We call the solution of (4.4) regular if w e C (D) V2 (D). It follows

immediately from Lemma 4.10 and Theorem 4.9 that the following theorem is

valid.

Theorem 4.11. There exists at least one q e R such that the solution w
q

of (4.4) is regular.
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Proposition 4.12. If w is a regular solution of (4.4), then

q
< q (4.36)

where qO is defined by (4.10).

Proof: Let wq be the solution of (4.4), and

F1 (q,z) - wq(r0 ,z) - w q(r 0,h) - (hw-h)(z-h) for z < h

y- F 1(q,z)
F2 (q) hl z-h

z~h-O

Given q q0" Assume Wq is regular solution. Then it follows by

(4.15) and w e C (D) thatq

F2 (q) = 0 * (4.37)

On the other hand, we have

Lw 4 0 in D
q

Wqlr gq

aw

Hence Wq has minimum in D, which lies on 3D. Clearly, it just is

w (r ,h) < 0. So we have
q 0

F (q,z) ) -(h - h)(z - h)

and

F2 (q) 4 -(hw - h) < 0 for q )0 " (4.38)

This contradicts (4.37), and w. cannot be a regular solution for q ; q0.

Q.E.D.

To complete this section we display the relation between (4.4), (4.6) and

(4.8).
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Theorem 4.131. If q q ( 0 and wq is the solution of (4.4), then

W 0O inD

w g (r,H) in D\ 1 )(*9
q q

Moreover, (4.4), (4.6) and (4.8) are equivalent for q 4 q 0

Proof: By Proposition 4.2 and 4.3 it is sufficient to prove (4.39). Let

2q 1' and wq be the solution of (4.4). It follows from (4.11), (4.15)

(3.15) and (3.16) that

aw

q qr D 0,-8nrN>0

it is easily shown by the maximum principle that v q ; 0 in D. We now prove

the second part of (4.39).

Let Q q be defined as in Proposition 4.7. Noting that

in

wmax(wqigq(rH) in D\Ql

0-
and w e C (D) we may prove that w' e V (D) (see for instance Kinderlehrer

q q1
and Stampacchia [1980, p. 501). Hence q"eV() lC() We have

Lw" -Lw - Lg (r,H) - 0 in n~ (by (4.2) and (4.23))
q q q q

-"I 0 (by that w" e C 0 (3) and w"IaD 0) .
q ~ qq

q

It follows from the maximum principle that w"n 0 in 9 . Hence w" 0 in
q q q

D and w - we.
q q

Q.E.D.
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It follows from the theorem that

Corollary 4.14. Under the same assumption as in Theorem 4.13 we have

(4.41)Tr 0
D

5. The Existence of the solution of (PPW).

In this section we prove that a regular solution of (4.4) corresponds to

a solution of (PPW). Following the framework of Baiocchi et al. (1973], we

establish several lemmas at first.

Throughout this section let w be a regular solution of (4.4) and let

~2be defined as in Proposition 4.7.q

L emm 5.1.ne in D. (5.1)tin.7
aw

Lemma 5.1. 0 in ( 5.1)
p-,I

Proof: Let < = (r,z) 8 D 0). Then E is an open set, and E C alq
------- * q

In fact, if (r*,z*) e D Cq, then it follows from (4.36) and (4.39) that
q

w (r ,z ) g (r ,H) >w Cr ,z) for 0 < z < H

3w (r ,z ) * _
Hence = 0, and (r ,z ) e E.*1z

If E 0, then by Proposition 4.7 we have

aw
L(_- ) =0 in E3z

aw
Therefore Z2 has a strictly negative minimum in E (since w e C (D))

aw q

which lies on 3E; but neither on 3E n fl where - 0; nor on D
(44)s o nr hr w - -hq D~2 '0 b

(4.41)M nor on r6 where Ml h - h > 01 nor on r7  (by remark 3.2).

This is absurd, and E - 0.

Q.E.D.
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Lemma 5.2. If q > 0, then

aw
0 q r in D (5.2)

rr

aw
Proof. Let v = r T7" Let E = ((r,z) Iv > q). Then E is an open set, and

E q (since it is easy to show that v 4 q in D\Q ). Therefore,q q

LIv = r(Lw) =0 in E1 q r

283where L = L -- is still an elliptic operator. Simple computation
r

indicates:

0 on r I u r 7

q on r
3

3V 0 on r u r u r 5 u r
rn2 4 5 6

By maximum principle (see for instance Gilbarg and Trundinger [1977]) v has

maximum strictly bigger than q in E which lies on 3E. An argument

similar to that in the proof of Lemma 5.1 indicates that E 0 0. Similarly we

may prove that E - [(r,z)Iv < 01 = 0.

Q.E.D.

Remark 5.1. Similarly we have that if q < 0 then

1r <r - 0 in D * (5.3)

Remark 5.2. If q = 0, then I = 0. Hence

2 2 (hw-Z)
Hz .H w for h 4 z 4 h

2 2 z w

It requires that H = hw, We have assumed that hw < H. So w0  is not

regular solution.
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Remark 5.3. By using (5.1), (5.2) and (5.3) we may easily show that if

(r,z) e tDA then
q

-, r )ro z )hw

w

Lemma 5.3. - 0 on r 3 (5.4)

Proof: It is obvious that

aw (r iH) w (r 0,H)

az az 0 (5.5)

Let q > 0. Then for r e .[r0 r1[ and A > 0 with r + X < rl there

exists e e]o,1[ such that

aw (r +X,H) 8wq (r H)3 a "

w (r +X,H-h)-w (r +X,H) w (r ,H-h)-w (r ,H)

At  -h -h

in. a wr +OH-h) -- 0 (by Lemma 5.2)
h++O r +OX

aw
Therefore r is nondecreasing function of r on r and (5.4) follows

from (5.5). The proof for q < 0 is similar.

For point p = (r*,z*) we define the sets

{(r,z) e Dir < r , z > zi}

p

Q , = {(r,z) e Dr > r , z < z* "
p

Lemma 5.4. If q > 0, then
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Q C V1 for pe (5.6)

P q q

Qp C for p e D n an (5.7)
q q* -*-

Proof: Let p e D\q and a(r) - w(r,z ) - g(r,H). We have r ro,q

z ) h (by Remark 5.3), a(r ) = 0 (Theorem 4.1*), a'(r) 4 0 (by Lemma
w

5.2). Hence a(r) ) 0 for r e [r0,r 1, and w(r,z) - g(r,H) for

* r 8 [r0,r 1. It follows from Lemma 5.1 and Theorem 4.13 that

w(r,z) g(r,H) in {(r,z)Ir 4 r 4 r * z4 z 4 H)
0

+
' i.e. Q+. c AS

q
P *

For p1 - (r',z ,) e D\ there exists e Dq such that r > r',

z *z< z,. Clearly QI C Q * and Q+CB\f. Hence Q +C BO
p p P q p q

For p e 3D (5.6) is trivial. (5.7) is easily seen by reducing to

absurdity and (5.6).

Q.E.D.

Remark 5.4. For q < 0 and p - (r ,z ) we define

R M {(r,z) e DIr > r , z > z*I
P

• *}

R-* = {(r,z) e Dlr < r , z < z*I
P

Then we obtain by similar argument that
-- --

R + C \ for p e BO• q q
P

R-C for p e B n agq q
p

From Lemma 5.4 immediately follows a property of q-- q

* Corollary 5.5. 1 is a connected set.q

Lemma 5.6. 3q () D does not contain any vertical or horizontal line segment,q

and ao r3 -0.
I-33
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Proof: Assume that an ql D contains a vertical line segment r -q

{(r,z) e Dir - r', z' 4 z 4 z"}. Denote N1

= {(r,z) e Dir > r', z' < z < z"}, N2 - ((r,z) e Dir < r', z' < z < z"}. Then

Ni C 2 and N2 C D\1Yq (by Lemma 5.4). Hence wq(r,z) - qq(r,H) and

aw
ywr- q/r in 2 ; L - -1 in N1. Therefore w I is the solution of

i qN
the Cauchy problem

Lw -1 in N1q

wi - g(r',H)

aw
r r

By the uniqueness of the solution we have

2 r' r 1 2 2
w - n -+(r' - r2 ) + g,(r,H) in N
q 2

2
But w = Hz - -- on r . This contradiction proves that 3 N D does notq 2 2 i

contain any vertical line segment. By similar argument and (5.4) we obtain

that ag ql D does not contain any horizontal line segment andq

ai nr -0.q 3

Q.L.D.

Theorem 5.7. If q < 0, and

f - S U f(r,z) e DIr > r0 , wq < g q(r,H)) (5.8)Sq 1

,Pqr) = sup{zI(r,z) e q) for r e ]r0 ,r11 (5.9)

(r 0 lim o (r), plr1 ) = lim 0,(r) (5.10)
rro+0 q r,*rl0
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aw

U- az + z in D, u " U I (5.11)
~q

then {u , iq(r)l is the solution of (PPW).

Proof: First we note that p q(r) is a well-defined, strictly increasing,

continuous function for r e ]r0 ,rlE. In fact, for any r e ]r01r1 [ we have

Wq < gq(r,H) if z is small enough since wq - 0 on r, and qq(r,H) > 0.

So {zl(r,z) e 0 ) is nonempty and q(r) is well-defined. It immediately
q

follows from (5.1) and the definition of q(r) that

= U {(rz) e Djr > r0 , 0 < z < P r)} . (5.12)

Lemma 5.6 shows that {(r,'p (r))Ir < r < rI is a Lipschitz graph with
q 0

respect to the axes x - r-z, y = r+z. Hence 0 q(r) is a strictly

increasing, continuous function.

By virtue of (5.9), (5.10) and (3.15) it is readily shown that

p(r 0) hw , l(r1) = H. Then (2.6) and (2.7) have been proved. (2.8) is

obvious.

Now we check (2.4). Since wq = q(,H) in EA we have
q

g=0, u = z on raz q 0

the rest of (2.4) is obvious thanks to (3.15) and (3.16).

Finally we check (2.9). Given any * e 2(n ) with 4 - 0 in aq

neighborhood of r2 U (r4 (n an ) U r5 U r6  we have (note (4.23) and (5.12))

2 4 2 5
fn rVu sV*drdz - f r + (- + ) drdz

q q A q r[ 3r

=f~ 3r 3r r 22idrdz

j -40-
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q

w 2w[fan r 3 r3 r r 3r iz

q a w d - w a !wd

w aaw

f r r-- ! dr +r -!tdz (since o~- on r u r
r r ar r ar ar 1 7

= + dr dz (since w = g (r,H), r-- q in D\1)

S-q[ r 0 ,O(r0 )) - *(r1,,(rI)) + *(r0 ,lr0)) - *(r1 ,v(r1 ))] - 0

The proof is completed by virtue of the denseness of (i} described above

in K I .

Q.E.D.

If q < 0, then by using similar arguments we obtain that s (r) is
q

strictly decreasing, continuous for r e ]r0 ,r1 , and that vq(rI) - H. This

is absurd. Hence we obtain (recall (4.36) and remark 5.2):

PropOsition 5.8. If wq is a regular solution, then

0 < q < q (5.13)

Proposition 5.9. Let

Q {qiw is a regular solution of (4.4)} (5.14)
q

Then:
Q C (0,q0[ (5.15)

Q is a closed set (5.16)

Wq is nonincreasing on Q (5.17)

Proof: (5.15) is clear by virtue of (5.13). (5.16) follows imaediately from

Theorem 4.q and the continuity of G(q) (see the proof of Lemma 4.10). Now

we prove (5.17). Let q1, q2 e Q, q1 ( q2, and

-41-
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2 ((r,z) eDIw v -v w <0)
q, q 2

Then w < W q 9 (r,H) 4 g (r,H) in 9 n (r )0 r 0. Hence CC 0 ,and

q1  2  q2 0
Lw 4 0 in R (by Proposition 4.4 and 4.7). v has strictly negative minimum

on E which lies on 32; but not on 3Z() D where v - 0; nor on r

where v -' 0; nor on r where 2w-01nro r (b reak3 ).Ti
6 an 7 : nro b eak32. Ti

is absurd. Hence R 0.

Q.E.D.

Let q. igf~q}, ch4 - s~p(q). By (5.15) and (5.16) we have

4Q Q

From (5.17) follows immediately the theorem

Theorem 5.10. For any q e Q we have

w W ~W in D *(.8

-42-
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APPENDIX

The pxvof of Theorem 3.A.

Taken 8with 0 < 8< r . Let

W {(r,z) e DIO < r < 81

W (r ,z) e Dir > 8/2)

then DW 1 W s1 2 W sume Pit, P is the corresponding partition of unity,

then

P + 0 for (r,z) e D1 2

We may choose P 2such that

2

[1 r

E C

I I P

A B6 r=8

r=A -43-



It is to show that

f L( IV fP1 + vLP1 + 2VP1 .Vv

(2)

101

Pl~ I v I r1 = T-_ (PLY) r r7 - Plv'r=6 0

It follows from v e V2(D) that Vv e v (Wl). Hence

Vv e w2 (W1 )

where 1 is three-dimensional domain obtained by rotating w around z-

axis. By the embedding theorem we have

Vv e LP(W1) (p < 6)

So Vv e Lp (W I ur) and

L(P v) e LP(w I ir) (p < 6)

Considering Plv as the solution of three-dimensional problem (2), we have

p1 v e W2 ('a1) (p < 6)

By using the embedding theorem again and returning to two-dimensional dmain we

obtain
8-1 3

P v e c ) (8 ) . (3)

In W2 polygon A'BCEPQ' the operator L is non-singular. It is

easily seen that
A(P V) = g

2

3(p v)

SD2 2 2

where
•g = pf+ vLP2 V ~ 1 3 p1l

2 2 +r2V0  v L (P2v) e L (W2 ) (PI 6)

Let v0 - g * 1 1 where * expresses convolution operation,

then Av0  g and

-44-



V0 e w2  wC ck(k<)p1 Pi2) 3()) k

Let v, = v0 - P2v, then

AV1 -0

Vl aw2\PQ, Vo I\2g

v I  W v0

IpQI - 3n pQ'

By assumption v e v2(D) we have

y e 212) C Ck(W2) (0 < k' < P

Hence

v e c k ' () (0 < k' <122
By using theorem 4.4 of Volkov [1965] (Trudy of Mathematics Institut of

Steklov, 77 (1965), 113-142) we have

B- 5

1 (;2) (B 3

So

P 2v e 2 ( < 1) (4)

It follows from (3) and (4) that

v e c () ( < i)2

Q.E.D.
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